Next-Level Autonomy Achieved: Meet the Air Force Avenger Drone

0 0

The Air Force Research Lab (AFRL) is flying autonomous drones able to navigate uneven,rigorous terrain, independently find and transmit target specifics, perform manned-unmanned teaming missions and operate a large number of functions without needing pilot control. Newerapplications of software, hardware and computing could also possibly lead to unmanned-unmanned teaming. In such an environment,autonomous drones would operate swarmsdesigned to blanket an area with surveillance, testenemy air defenses, find targets over high-threat areas and perhaps themselves function as mini-explosives.

Thus, agrowing missionwould beenhancedby the services emerging Skyborg Autonomy Core System program, a suite of integrated sensing, computing and payloadtechnologies engineeredfor greater operational autonomy and manned-unmanned systems. Following a successful first flight in April 2021 on board a Kratos UTAP-22 drone, the Air Force Research Laboratory recently conducted a second flight with Skyborg ACS on a General Atomics MQ-20 Avenger.

The flight, which took place at Edwards Air Force Base, California, is part of a critical AFRLprototyping effort to introduce new levels of autonomy into air war. This will allow military personnel to expand the scope of their mission.

Humans willmaintain supervisorycommand and control toensure any use of lethal force is decided upon by a human pilot and in accordance with the militarysdoctrine. However, Skyborg ACS will introduce breakthrough levels of autonomy enabling drones to perform a much wider sphere of operations without needing each individual action directed by a human.

Military pilots receive key information about their surroundings when teamed aircraft with integrated autonomy detect potential air and ground threats, determine threat proximity, analyze imminent danger, and identify suitable options for striking or evading enemy aircraft, anAir Force Research Laboratoryfact sheetsays ofSkyborg. The program will enable airborne combat mass by building a transferable autonomy foundation for a family of layered, unmanned air vehicles.

Skyborg ACS is enabled by advanced computer algorithms engineered to gather, distill, organize, analyze, solve problems and ultimately streamline key data points of relevance to humans.

Embedded within the teamed aircraft, complex algorithms and cutting-edge sensors enable the autonomy to make decisions based on established rules of engagement set by manned teammates, the AFRL fact sheet states.

There are plans to expandfield testingand development of Skyborg ACS to further ensure the algorithm’s accuracy and performance consistency. As testing and technical maturation continue to progress, the possibilities with a technology of this kind are quite significant. For many years now, aerial drones have been able to follow GPS-determined waypoints, however greater autonomy will likely enable drones to independently adjust to new information such as target movements or emerging terrain obstacles. This decreases the procedural functions human pilots need to perform, therefore moving toward establishing an optimal blend of man and machine in combat.

Kris Osborn is the defense editor for theNational Interest. Osborn previously served at the Pentagon as a Highly Qualified Expert with the Office of the Assistant Secretary of the ArmyAcquisition, Logistics & Technology. Osborn has also worked as an anchor and on-air military specialist at national TV networks. He has appeared as a guest military expert on Fox News, MSNBC, The Military Channel, and The History Channel. He also has a Masters Degree in Comparative Literature from Columbia University.

Image: Reuters

source

You might also like
Leave A Reply

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More